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Convex hulls of a curve in control theory

A. N. Kurbatskǐı

Abstract. A classification is obtained for typical singularities of the local
transitivity sets of control systems on three-dimensional manifolds with
nonconvex indicatrices that are closed smooth spatial curves.
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Keywords: transitivity set, singularity, convex hull.

§ 1. Introduction

We consider a control system on a three-dimensional manifold M whose tangent
space TmM at each point m is equipped with the set Im of admissible velocities
(indicatrix) which depends smoothly on m. We assume that Im is a smooth closed
spatial curve. The case when Im is a smooth closed surface was considered in [1].

The set of local transitivity, consisting of those points m for which the zero
velocity O ∈ TmM belongs to the interior of the convex hull of Im, is of interest
in control theory. In particular, for each pair of neighbouring points of the set
of local transitivity, there is a sufficiently short admissible curve connecting these
points. Recall that an absolutely continuous parametrized curve γ(t) is referred to
as admissible if the derivative γ̇(t) at almost every point belongs to the indicatrix of
this point. The boundary Σ of the set of local transitivity consists of those points m
for which O belongs to the boundary H(Im) of the convex hull of the indicatrix
(see [2]).

In this work we classify all typical local singularities of Σ up to diffeomorphism
(Theorem 2). All these singularities are germs of graphs of Lipschitz continuous
functions and functions of class C1.

The classification problem for singularities of the boundary Σ was proposed by
A. A. Davydov. The author is grateful to him for useful discussions.

§ 2. Main results

Treating a point m of the manifold Mn as a parameter and fixing a trivialization
of the tangent bundle of M , we reduce the initial problem to the study of a family of
curves rm(t), t ∈ S1, embedded in Rn and depending on the parameter m, and to
the classification of singularities of the set Σ of those parameter values for which
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0 ∈ Rn belongs to the boundary H(rm) of the convex hull of the corresponding
curve.

We start with a simple case of the control system

ẋ = f(x, u), x ∈ M2, u ∈ S1,

on a two-dimensional manifold M whose tangent plane at each point is equipped
with the set of admissible velocities Im, and assume that this set is a closed smooth
curve.

As we shall see below, the list of typical singularities of Σ includes the list of
typical singularities of the convex hulls of individual smooth curves.

In the case of a generic curve in the plane the list is as follows:
• the germ of a convex curve or a line;
• the germ of a curve which can be taken by a diffeomorphism of the plane to

the germ at the origin of the graph of function y = f(x), where

f(x) =

{
0 for x 6 0,

x2 for x > 0.

For a typical family of curves depending on two parameters, the boundary Σ of
the set of local transitivity can have only one more new singularity.

Theorem 1. For a generic family of curves Im in R2 depending on a parameter
m = (x, y) ∈ R2, a local singularity of the boundary Σ of the set of local transitivity
is either a typical singularity of the convex hull listed above, or the germ at the
origin of the graph of function y = −|x| (up to a diffeomorphism of the space of
parameters).

The proof is given in the next section (after the proof of main Theorem 2).
We now turn to the main case of a three-dimensional manifold M . The convex

hull of a typical smooth spatial curve (of class C∞) is not smooth. The following
list was obtained in [3] and [4]:

The list of typical singularities of the convex hull of a curve in R3:
(1) the germ of a smooth surface which is either developable (Fig. 1) or planar

(Fig. 2, point C);

Figure 1 Figure 2
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Figure 3 Figure 4

(2) the germ at the origin of the graph of Lipschitz continuous function z =
f(x, y), where

f(x, y) = −|x|

(this germ appears at a typical point of the initial curve itself; see Fig. 3);
(3) the germ of class C1 at the origin of the graph of function z = f(x, y), where

f(x, y) =

{
0 for x 6 0,

x2 for x > 0

(it appears at conjugacy points of a developable surface and a part of the plane;
see point D in Fig. 2);

(4) the germ at the origin of the graph of function z = f(x, y), where

f(x, y) =


x2 for y 6 x, x > 0,

y2 for y > 0, y > x,

0 for y 6 0, x 6 0;

(5) the germ at the origin of the graph of function z = f(x, y), where

f(x, y) =


0 for y 6 0, x 6 0,

x2 for y 6 −x, x > 0,

y2 for y > 0, y 6 −x,
1
2 (x2 + y2)− y − x for x + y > 0

(germs (4) and (5) correspond to the vertices B and A of planar triangles which
appear in an essential way on the boundary of the convex hull);

(6) the germ at the origin of a truncated swallowtail (see Fig. 4)

f(x, y) = min
z∈R

{z4 + xz2 + yz}.

More essential singularities occur in generic families of surfaces depending on
three parameters. However, only some of them correspond to the boundary Σ of
the transitivity zone.
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Theorem 2 (Main Theorem). For a generic family of curves rm: S1 → R3 depend-
ing on a three-dimensional parameter m = (x, y, z) ∈ R3, the local singularities of
the boundary Σ of the transitivity set are as follows (up to diffeomorphism of R3):

(1) the germs of the surfaces (of class C1 or C∞) of the convex hulls of typical
surfaces in R3 listed above;

(2.1) the germ of the surface of a dihedral angle at the edge (see Fig. 5),
(2.2) the germ of the lateral surface of an n-gonal pyramid at its vertex, for

n = 3, 4, 5 (for n = 5 one face cannot be straightened, see Figs. 6–8);

Figure 5 Figure 6

Figure 7 Figure 8

Figure 9
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(3) the germ at the origin of the union of three surfaces with boundary (see
Fig. 9), given by the conditions

z = 0, y 6 0;

y = x2, z 6 −4x2;

z = −a2, y =
1
4
z + ax, a ∈ R.

The first two surfaces (I and II) are smooth and transverse to each other (if
we discard the inequalities). Their edges are smooth curves which are tangent at
a single common point, the origin. The third surface (III) is part of the Whitney
umbrella bounded by the edge curves of the first two surfaces and tangent to the
first two surfaces at points of the edge curves (see Fig. 9).

§ 3. Proof of the main theorem

3.1. Auxiliary constructions and results. Here we use constructions similar to
those used in the proof of the classification theorem for surfaces, see [1], Theorem 2.
In the case of spatial curves these constructions are as follows.

Let q1, q2, q3 be the coordinates in R3, and let R̂3 = {(n1, n2, w)} be the affine
chart of the dual space consisting of cooriented planes in R3 which are not parallel
to the q3 axis. Then the oriented normal to such a plane has components (n1, n2, 1),
and w is the coordinate of the intersection point of the plane with the q3 axis.

A supporting plane of a curve I = {r(t)} is a co-oriented plane whose open
positive half-space does not contain points of I, and the plane itself contains points
of I. In other words, among all planes with normal (n1, n2, 1) intersecting the
curve I, the supporting plane P has the maximal value of w.

For each supporting plane P , we denote by SP the set of its common points
with I, and we refer to this set as the support of the plane P . Observe that all
points in the support of a supporting plane are points of tangency with the curve.

The following statement is well-known (see, for example, [3]).

Proposition 3. The convex hull of a compact set is the union of the convex hulls
of supports SP for all supporting planes P .

Proposition 4. For a family of generic curves depending on s parameters, each
support SP consists of at most 3 + s points.

Proof. We consider the space of multijets at n points r1(t), . . . , rn(t) of a param-
etrized curve r(t), that is, the direct product of n copies of the space of jets
Jk(R, R3) × · · · × Jk(R, R3) (of sufficiently high order k) of maps from the line
to the three-dimensional space.

If there exists a plane tangent to the curve at n points corresponding to the values
t1, . . . , tn of the parameter t, then the vectors ṙ(t1), . . . , ṙ(tn), r1−rn, . . . , rn−1−rn

are coplanar, that is, the rank of the 3×(2n−1)-matrix formed by these vectors is at
most 2. It follows from the theorem on the product of coranks that the codimension
of the subset F given by this condition in the space of multijets is equal to 2n− 3.

A family of curves depending on s additional parameters defines a map from
the set of collections of these parameter values and n values t1, . . . , tn to the space
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of n-multijets. It follows from the transversality theorem that for a generic curve
this map is transverse to the above defined subset F in the space of multijets. In
particular, for 2n−3 > n+s, each multijet of a typical curve does not intersect this
subset. Therefore, the inequality n 6 3 + s is necessary for a plane and a spatial
curve to be tangent at n points.

We consider multigerms of the curve in a neighbourhood of the support S0 of the
base supporting plane, which we may assume to be given by the equation w = 0.
In a domain containing the convex hull of the support of the base plane, all other
supporting planes belong to the above described chart of nonvertical planes, and
their supports belong to a neighbourhood of the support S0.

The Legendre transform γ plays the pivotal role in the classification of singu-
larities of convex hulls of submanifolds in an affine space (see [3]). The Legendre
transform of a spatial curve is defined as follows.

We assign to a point Q of the curve r(t) the set of germs at this point. This
set is diffeomorphic to the circle S1 consisting of all cooriented tangent planes to
this curve. The germs form the Legendrian submanifold Lr ≈ S1 × S1 in the
space of co-oriented contact elements ST ∗R3. Consider the projection γr of this
submanifold, obtained by forgetting the base point of a germ and assigning the
corresponding cooriented plane to it. Then γr is a Legendrian map from the sub-
manifold Lr to the dual space R̂3.

Note that a plane from R̂3 is a supporting plane if and only if it is tangent to r
at one or several points (that is, it belongs to the image of γr) and the value of w
(that is, the coordinate of the intersection point of the plane with the q3-axis) is
maximal among all the parallel tangent planes from the image of γr. This image
(the wavefront) r̂ = γr(Lr) is referred to as the Legendre transform of the initial
curve r. The subset r̂ consisting of supporting planes will be denoted by Su(r).

A point Q ∈ R3 corresponds to a plane Q̂ in the dual space, where Q̂ consists of
all planes of R3 passing through Q.

A point Q belongs to the boundary of the convex hull H(r) if and only if Q̂

is a supporting plane for Su(r): the open negative half-space Q̂ does not contain
points of Su(r), while the plane itself contains such points.

Therefore, the condition that a point O belongs to the boundary of the convex
hull can be formulated in terms of the dual space R̂3 = {(n1, n2, w)}. Denote by
Ô the plane in R̂3 given by the equation w = 0 and consisting of all planes in R3

passing through the point O.

Proposition 5. A point O belongs to the surface X ⊂ R3 if and only if the dual
surface X̂ = γ(LX) is tangent to Ô.

Remark 6. If X is a ruled surface, then X̂ is a curve tangent to the surface Ô, for
each O ∈ X. If X is a plane, then this condition is equivalent to the condition that
Ô passes through the point X̂.

The proof of the proposition follows from the fact that the square of the Legendre
transform of a generic hypersurface is the identity transformation.

Degeneration of curves depending on parameters has been studied in [5] and [6],
among other papers. In particular, the following statement can be extracted from
these works, although it can easily be proved directly.
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Proposition 7. For generic families of embedded spatial curves rm depending on
a three-dimensional parameter m = (x, y, z), the germ at a point in a proper affine
coordinate system (q1, q2, q3) with origin at this point has one of the following forms :

(1) q1 = t, q2 = t2 + · · · , q3 = t3 + · · · : a nondegerate point of codimension 0
(type A2);

(2) q1 = t, q2 = t2+ · · · , q3 = t4+ · · · : a simple flattening point of codimension 1
(type A3);

(3) q1 = t, q2 = t2 + · · · , q3 = tk + · · · , where k = 5, 6, 7: a point of multiple
flattening of codimension k − 3 (type Ak−1); this is the first essential singularity
for isolated points of individual curves in families depending on k − 4 parameters ;

(4) q1 = t, q2 = t3 + · · · , q3 = tk + · · · , where k = 5, 6: a point of codimension
k − 2; this is the first essential singularity for isolated points of individual curves
in families depending on k − 3 parameters ;

(5) q1 = t, q2 = t4 + · · · , q3 = t5 + · · · : a point of codimension 4; this essential
singularity occurs in isolated points of a curve for isolated values of three parame-
ters.

Here by the codimension we mean the codimension of the corresponding class in
the space of germs (jets) jN (1, 3) at a fixed point. The dots denote the terms of
higher order in t.

A germ at a point Q of the tangent plane to the curve is referred to as regular
if the curve has singularity of type A2 or A3 at this point and the plane is not
osculating, that is, does not coincide with the coordinate plane (q1, q2) in the above
coordinates.

Note that in a typical case the space of parameters may contain a subset of
codimension 1 corresponding to curves rm with self-intersection points.

Proposition 8. For a generic family of curves, if O belongs to a supporting plane P ,
then

(1) the plane P is either regular at each point of the support SP , or is osculating
at a simple flattening point of type A3;

(2) P does not contain self-intersection points of the curve.

Proof. The statement is implied by the following observations.
1. An osculating plane at a regular point cannot be supporting: the curve lies

on both sides of this plane.
2. Let O belong to an osculating plane P for a degenerate singularity of the curve

of codimension greater than one. Assume that P is a supporting plane and its sup-
port consists of l = 1, 2, 3 points. The dimension of the convex hull of the support
is at most l − 1. At least 3 − l + 1 conditions need to be satisfied for the point O
to belong to the convex hull of the support. It takes l conditions for l points to
belong to the osculating plane. Finally, at least one condition is required for the
point itself to belong to the curve. Therefore, we need strictly more than three
independent conditions, which is impossible in the case of general position with
three parameters.

3. The codimension of the case when a support plane contains a self-intersection
point of the curve, the point O, and possibly other points of the curve is calculated
in the same way as in the previous paragraph, and is therefore greater than 3.
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Proposition 9. Assume that a point Q of the curve is either nondegenerate or
a simple flattening point of the convex hull of the curve. Then the supporting planes
containing Q form a closed arc on the circle S1 of all co-oriented tangent planes
at Q. Interior points of this arc correspond to supporting planes whose support
consists of the point Q only, and the boundary points E1(Q) and E2(Q) correspond
either to supporting planes whose support consists of more than one point, or to
osculating planes (in the case of simple flattening).

Proof. Let W be the subset of the circle formed by the tangent planes at Q. It is
obvious that the closure of W is connected. The boundary points of W correspond
to bitangent planes or to osculating planes.

The transversality theorem together with Theorems 1, 2 and Propositions 3–5,
7–9 imply the following list of possible locations of the origin on the boundary of
the convex hull of a typical family of curves.

An ordered pair of points r(t1) and r(t2) on the curve is referred to as collinear
if the velocity ṙ(t1) at the first point is collinear with the vector r(t2)− r(t1).

The support of a supporting plane is said to be noncollinear if no pair of its
points is collinear.

Lemma 10. For a generic family of curves depending on a three-dimensional par-
ameter, the parameter value m belongs to the boundary of the transitivity set Σ in
one of the following cases.

10. The point O is a nondegenerate point or a simple flattening point of the
curve rm. The supporting planes have noncollinear supports, each of which consists
of two points of regular tangency (Fig. 10).

Figure 10 Figure 11

1f . The point O is a simple flattening point, the osculating plane is boundary and
supporting, and its support consists of the point O only. The other boundary sup-
porting plane has a regular tangency at one more point, which forms a noncollinear
pair with O (Fig. 11).

1c. The point O is a nondegenerate point of the curve, the supporting plane has
support consisting of two points forming a collinear pair (Fig. 12).

13a. The point O is a vertex of a triangle which is the noncollinear support of
a supporting plane, and the triangle is regular at all vertices. The arc of supporting
planes at O degenerates into a point. The line containing the velocity vector at O
intersects the interior of the triangle (Fig. 13).

13b. The point O is a vertex of a triangle which is the noncollinear support of
a supporting plane. The plane has regular tangency with the curve at the vertices.
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Figure 12 Figure 13

The line containing the velocity vector at O does not intersect the interior of the
triangle. The other edge of the arc of supporting planes at O is a bitangent plane
with regular tangency (Fig. 14).

Figure 14 Figure 15

20. The point O belongs to an open interval whose edges form the noncollinear
support of a supporting plane with regular tangency at each of the edge points
(Fig. 15).

2c. The point O belongs to an open interval whose edges form the collinear sup-
port of a supporting plane with regular tangency at each of the edge points (Fig. 16).

Figure 16 Figure 17

2f . The point O belongs to an open interval whose edges form the noncollinear
support of a supporting plane with regular tangency at one of the edge points. The
second edge point is a simple flattening point, and the osculating plane at this point
coincides with the supporting plane (Fig. 17).

30. The point O belongs to the interior of a triangle whose vertices form the
support of a supporting plane. The tangency at all vertices is regular, and the
velocity vectors are not collinear with the edges of the triangle.

3c. The point O belongs to the interior of a triangle whose vertices form the
support of a supporting plane. The tangency at all vertices is regular, and the
velocity vector at some vertex is collinear with an adjacent edge (Fig. 18).
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Figure 18 Figure 19

3f . The point O belongs to the interior of a triangle whose vertices form the
support of a supporting plane. The tangency at two vertices is regular, and the
third vertex is a simple flattening point whose osculating plane coincides with the
supporting plane (Fig. 19).

3s. The point O belongs to an edge of a triangle whose vertices form the support
of a supporting plane. The tangency at all vertices is regular, and the velocity
vectors are not collinear with the edges of the triangle (Fig. 20).

Figure 20 Figure 21

3sc. The point O belongs to an edge of a triangle whose vertices form the support
of a supporting plane. The tangency at all vertices is regular, and the velocity vector
at some vertex is collinear with an adjacent edge (Fig. 21).

3w. Three points on a line form the support of a supporting plane. The tangency
at all these points is regular, and the velocity vectors are not collinear with the line.
The point O belongs to one of the segments formed by these three points (Fig. 22).

Figure 22 Figure 23 Figure 24

40. The point O belongs to the interior of a quadrangle whose vertices form the
support of a supporting plane. The tangency at all points is regular. The point O
does not lie on the diagonals or edges of the quadrangle (Fig. 23).

4s. The point O belongs to an edge of a quadrangle described in the previous
case, so that all four vertices belong to one of the closed halfplanes with boundary
containing the above edge (Fig. 24).
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4sb. The point O lies on a diagonal or on an edge of the quadrangle described
in Case 40, so that the vertices of the quadrangle lie on different sides of the line
containing the diagonal or edge (Fig. 25).

Figure 25 Figure 26

50. The point O belongs to the interior of a pentagon with vertices a1, . . . , a5

and does not lie on the diagonals or edges of the pentagon. The points ai ∈ Γ form
the support of a supporting plane P which has regular tangency with the curve at
all points (Fig. 26).

3.2. Proof of Theorem 2. We consider the germ of the boundary of the tran-
sitivity set at a base point m0. The multigerm of the Legendrian map (γrm0

, P ) is
stable on its support SP and, furthermore, the germ of the convex hull is stable in
the vicinity of zero.

The convex hull is stable in the cases

10, 1f , 1c, 13a, 13b, 20, 30, 3s,

and also in the cases
2c, 3c, 3cs.

In cases 10 and 1f the convex hull in the vicinity of zero consists of two transverse
smooth surfaces with common boundary. In case 1c the convex hull in the vicinity
of zero is diffeomorphic to a truncated swallowtail. In cases 20, 30, 2c and 3c the
convex hull is the germ at zero of a smooth surface which remains smooth for close
values of parameters. In cases 3s and 3sc the germ at zero of the convex hull is
also stable and consists of two smooth surfaces which are tangent at their common
boundary, and therefore their union is a smooth surface of class C1. Finally, in
cases 13a and 13b the convex hull has type (4) or (5) from the list of normal forms
of convex hulls of individual curves, and therefore the convex hull is also stable
under the change of parameters.

Note that the collinearity of a pair of points a, b from the support of a supporting
plane affects the stability of the convex hull at the point a only. Indeed, the
Legendre transforms of germs of the curve at the points a and b are smooth surfaces
â and b̂ which intersect at the line corresponding to the pairs of points of tangency
of bitangent planes with the germs of the curve. This line has a simple flattening
point, and the osculating plane is dual to the point a. If for the initial value of
parameter m0 the origin O does not coincide with the point a, then for close values
of the parameter the surfaces â and b̂ are in general position with the surface Ô.
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Thus, in all these cases, for close values of parameter m the boundary of the
convex hull is diffeomorphic to the boundary H(rm0) consisting of the closures of
domains on smooth surfaces.

We consider the union of germs Gm = H(rm)×{m} in the direct product R3×M
of the phase space and the space of parameters. This union is a five-dimensional
stratified set which is a topological manifold. The strata Gm are diffeomorphic to
products of the strata of the convex hull H(rm0) (for m = m0) and the germs of
the space of parameters. In all cases except 1c the closures of strata are smooth
manifolds with boundary. In the case 1c one stratum is the product of a truncated
swallowtail and R3.

In general position, the three-dimensional submanifold M0 = 0 × {m} of the
product above is transverse to the submanifold Gm. Since Gm is a topological
(Lipschitz) submanifold, the set of maps transverse to it is connected. By the
Legendrian stability, the intersection M0 ∩Gm is diffeomorphic to the intersection
of Gm with any transverse three-dimensional submanifold. In particular, this inter-
section is diffeomorphic to the section m = m0, that is, to the initial boundary of
the convex hull. Therefore, in all the cases when O belongs to the stable multi-
germ, the boundary Σ of the transitivity set coincides with the set M0 ∩ Gm and
is diffeomorphic to this germ. Thus, all the above cases have normal forms listed
in part (1) of Theorem 2.

Now we consider unstable configurations.
As we have seen above, in the cases of collinear supports the instability of the

convex hull may occur only at a point of the support from a collinear pair. In
the dual space, the set of tangent planes to the germs of curves at the points of
a collinear pair consists of smooth surfaces with transverse intersection. The only
special feature of this case is that the line of intersection of the two sets of planes
has an A3-flattening at some point. In the case of general position the point O
coincides with such a point in the stable case 1c only.

Therefore, it remains to consider cases 40, 4s, 4sb, 50, 3w, 3f and 2f .
We start with case 40, when the point O belongs to the interior of a quadrangle

and does not lie on its diagonals or edges.
One of the possible locations of the support for m = m0 is shown in Fig. 27. The

point O lies in the interior of triangles ABC and BCD. Note that for any other
location of the support there are two triangles with a common edge containing the
point O.

We consider the image of the Legendre transform of all tangent planes at points
of the germs of curves close to the points of the support ABCD. We obtain four
germs of ruled smooth surfaces lA, lB , lC and lD corresponding to the vertices of
the quadrangle. These surfaces intersect at a common point for m = m0 and are
in general position to each other. For parameter values close to m0, the point O
may belong to the convex hull only if it belongs to the interior of at least one of the
triangles ÃB̃C̃ and B̃C̃D̃. These triangles are the supports of supporting planes
and are close to the corresponding triangles ABC and BCD. Hence, for all close
values of the parameter, if O belongs to the convex hull, then the surface Ô contains
one of the intersection points Q̂1 and Q̂2 of the corresponding surfaces lA, lB , lC
and lB , lC , lD, provided that this point corresponds to a supporting hyperplane.
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Figure 27

The distances from these points to the surface Ô are two independent functions
of the parameters f1 and f2. Since the points Q̂1 and Q̂2 lie on the curve lBC of
intersection of the planes lB and lC , the supporting plane is the plane with the
greater distance.

Thus, the boundary Σ of the transitivity set is specified by the conditions f1 = 0,
f2 6 0 and f2 = 0, f1 6 0. Taking the functions f1 and f2 as the coordinates in
the space of parameters, we obtain the normal form given by a dihedral angle.

Figure 28

Now we consider case 4s. Assume that for m = m0 the point O lies on the edge
a1a2 of a quadrangle a1a2a3a4 (Fig. 28). In the vicinity of O and for those m close
to m0, the boundary of H(rm) either belongs to one of the triangles ã1ã2ã3 and
ã1ã2ã4 which are the supports (close to the corresponding triangles for m = m0) of
3-tangent planes denoted by P3 and P4, or belongs to the ruled surface formed by
the segments ã1ã2 lying in the bitangent supporting planes. For a fixed m, these
bitangent planes form a smooth curve Pt(m) ∈ R̂3, which we parametrize by t ∈ R.

Therefore, in case 4s the set of supporting planes Su(rm) intersecting with
a neighbourhood of O is a part of the curve Pt(m) corresponding to the inter-
val t > max{t3, t4}, where t3 and t4 are the parameter values corresponding to the
points P3 and P4 on the curve. In the extended phase space R̂3 × M the curve⋃

m Pt(m)× {m} sweeps out a four-dimensional surface parametrized by t and m;
for m = m0 the curve Pt(m0) is tangent to the plane Ô.
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Let θ : R̂3 ×M → R̂3 ×M be a family of diffeomorphisms of R3 fibred over the
parameter space, that is, π ◦ θ = θ ◦ π, where θ : M → M is a diffeomorphism and
π : R3×M → M is the projection onto the second factor. Assume that θ preserves
the hypersurface Ô and takes the set of supporting planes Su(rm) × {m} of one
family rm to the set Su(r′m)×{m} of another family Γm. Then the diffeomorphism
θ maps the corresponding sets Σ and Σ′ to each other.

In our case, in general position there is a diffeomorphism θ : R̂3 ×M → R̂3 ×M
with the above properties which takes the curve Pt(m) to the curve w = t2 − z,
n1 = t, n2 = 0, and the points P3 and P4 to the points n1 = x, n2 = 0, w = x2 − z
and n1 = y, n2 = 0, w = y2 − z, respectively. Indeed, in the case of general
position the n1-coordinates of 3-tangent planes have nondegenerate linear part in
the variables x, y, z.

Therefore, the set Σ is diffeomorphic to the set specified by the following condi-
tions: z = 0 for x 6 0 and y 6 0 (the interior points of the half-curve are tangent
to Ô); or z = x2 for x > y, x > 0; or z = y2 for y > x, y > 0 (one of the points P3,
P4 belongs to Ô). The resulting normal form coincides with the germ of the graph
of function (4) from the list of normal forms of convex hulls of curves.

Figure 29

Now we consider case 4sb. Assume that for m = m0 the point O lies on the
diagonal a2a4 of the support quadrangle a1a2a3a4 of the supporting plane (Fig. 29).
For those m close to m0 the boundary H(rm) of the convex hull in the vicinity of
O is either the ruled envelope of bitangent planes Pt(m) with supports ã2, ã4 close
to the points a2 and a4, respectively, or one of the three 3-tangent planes: P1 with
support ã1ã2ã4, P2 with support ã2ã3ã4 or P3 with support ã1ã2ã3.

Similarly to case 4s, the set of supporting planes is either a segment of the curve
Pt(m) between the points P1 and P2 (if t(P1) > t(P2)), or, if the order of points
on the curve is the opposite, then P3 is a supporting plane. A diffeomorphism θ
preserving Ô takes the curve Pt(m) to the form w = t2 − z, n1 = t, n2 = 0, the
point P1 to the form

P1 = {n1 = x, n2 = 0, w = x2 − z},

the point P2 to the form

P2 = {n1 = −y, n2 = 0, w = y2 − z}
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and the point P3 to a point on the hyperplane

w =
x2 + y2

2
− x− y − z.

Using the fact that P3 becomes a supporting plane for x+y > 0, we obtain that the
above normal forms define the germ of function (5) from the list of normal forms
of convex hulls of curves.

The existence of such a diffeomorphism can be proved as follows.
Consider a germ of the surface γrm at the point ã3. We shall denote this surface

by l3; it contains all points Pi and curves described above. Choose local coordinates
u, v on l3 in such a way that the intersection of Ô with l3 is given by the equation
v = 0. In general position, the intersection curves of l3 with the other surfaces li
(i = 1, 2, 4) dual to the germs of the curve at the other points ãi are given by the
equations v = gi(u, x, y, z), respectively. If we set the parameters x, y, z to zero,
then the functions g1 and g2 have a simple zero at u = 0, while the function g4 has
a double zero at u = 0, which corresponds to a simple tangency of the line Pt(0)
with the plane Ô.

We observe that the subset Σ of the parameter space is a subset of the bifurcation
diagram of zeros (that is, it is the set of parameters for which the function has
a zero critical value) for the family of functions V (u, x, y, z) = g1g2g4 on u with
parameters x, y, z, and this family is of special type as the product of three factors.
The theory of such (and more complex) composite families of functions has been
developed in [7] and [8]. In particular, one consequence of this theory is as follows.

Proposition 11. Each family V with the above described properties and with gen-
eric functions gi can be taken by a contact equivalence fibred over the parameter
space to a versal family of the form

V ∗ = (u− x)(y − u)(u2 − z)

in such a way that the sign of nonzero values of functions from V is preserved.

This proposition immediately implies the normal form of the boundary of the
transitivity set in case 4sb.

In case 50 we take the triangle ã1ã2ã3 into a standard position by a family of
affine transformations smoothly depending on parameter m. The boundary H(rm)
of the convex hull in a neighbourhood of the q3-axis is determined by one of several
3-tangent planes with supports from the neighbourhoods of a1, . . . , a5; these points
are the vertices of the triangles which for m = m0 contain the point O. It can be
either three such triangles (domain I), or four (domain II), or five (domain III),
see Fig. 30. In the way similar to the previous arguments, the 3-tangent plane
which contains zero becomes a supporting plane and this defines the surface of
a polyhedral angle in the parameter space. Note that one of the faces of a 5-hedral
angle in a three-dimensional space can not be straightened in a general position
(see also [1]).

In case 3w, assume that for m = m0 the origin belongs to the segment AB inside
the segment AC, which is the convex hull of the support consisting of three collinear
points {A, B,C} on a supporting plane P0 tangent to the curve in a regular way
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Figure 30

(the point B lies between A and C). The dual surfaces lA, lB , lC of the germs rm in
a neighbourhood of P̂0 are smooth (ruled) pairwise transverse surfaces. However,
since the points A, O, B, C are collinear for m = m0, the line ρ1 of intersection
of lA with lB is tangent to the line ρ2 of intersection of lA with lC , and it is also
tangent to the plane Ô at the point P̂0.

For an arbitrary m close to m0, the boundary of the convex hull in the vicinity of
zero is one of the ruled surfaces dual to the lines ρ1 and ρ2 lying on the surface lA.
Choose local coordinates u, v on this surface in such a way that the intersection of
the plane Ô with lA is given by the equation v = 0. Then the curves ρ1,2 are given
by the equations v = fi(u, x, y, z), i = 1, 2, respectively, and for zero values of the
parameters x, y, z the functions fi have a nondegenerate (Morse) minimum, which
is zero for u = 0.

As in case 4sb, the boundary Σ of the transitivity zone consists of those values
x, y, z for which the product V = f1(u, x, y, z)f2(u, x, y, z) has a zero critical value
which coincides with minu maxi=1,2 fi.

The stability theory of complex functions (see [7], [8]) implies the following.

Proposition 12. In general position, a contact equivalence fibred over the param-
eter space and preserving the sign of nonzero values takes the family V of functions
f1, f2 to the form

V ∗ = (u2 − z)(4u2 − 4xu + y).

Clearly, the contact equivalence described in the proposition takes the bifurcation
diagrams of zeros of the families to each other, and it also takes to each other their
subsets corresponding to Σ.

We can describe the set Σ in terms of the normal form V ∗. First, the set Σ
consists of those values of the parameters x, y, z for which the vertex of one of
the corresponding parabolas belongs to the axis v = 0, provided that the vertex of
the other parabola is below this axis. Second, the set Σ contains those parameter
values for which the vertices of the parabolas do not belong to the graph of the
auxiliary function maxi fi(u) (the least value of this function is achieved at the
point of intersection of the parabolas and is equal to zero). These conditions for V ∗

define exactly normal form (3) of Theorem 2.
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In the case 2f the boundary H(rm) for those m close to m0 in the vicinity of O
is either a ruled surface consisting of the support segments [ã1, ã2] of the bitangent
planes close to the support a1, a2 (this surface has an osculating supporting plane
containing O for m = m0), or a 3-tangent plane ã1, ã′1, ã2 with points ã1 and ã′1
converging to a1 as m → m0. For each m, the set Su(rm) of supporting planes is the
line of intersection of a truncated swallowtail l1 = (γrm , ã1) (the Legendre transform
of the germ rm in a neighbourhood of a1) with a smooth surface l2 = (γrm

, ã2).
By using a diffeomorphism θ of the above type and vector fields tangent to the
swallowtail, we can take our family of curves to the standard form

l1 = {(n1, n2, w) | ∃ t : w = min(t4 + n1t
2 + n2t)}, l2 = {n1 = x}.

In the case of general position such a diffeomorphism takes the surface Ô to a surface
of the form w = z+yn2+ϕ(x, y, z, n1, n2). Here ϕ has the second order of smallness
in the variables x, y, z, since Ô is tangent to the section n1 = 0 of the normalized
truncated swallowtail for x = y = z = 0.

This normal form defines the set Σ consisting of those x, y, z for which the family
W = t4 + xt2 + n2t − z − yn2 − ϕ of functions in t, n2 has a critical point with
zero critical value which is a minimum in t. In other words, the pair (y, z) belongs
to the set of supporting lines of the intersection curves of the minimal part of the
swallowtail,

w = min
t,n2

{t4 + xt2 + b(x, y, n2)t + c(x, y, n2)}

with the plane x = const, for certain smooth functions b, c.
By taking the family W to the normal form by contact equivalences (preserving

the sign of nonzero values) we obtain that the surface Σ is diffeomorphic to the germ
at the origin of the graph of function z = miny(y4 + xy2). This is a C1-smooth
conjugation of two surfaces with a common boundary (type 2) from the list of
normal forms of convex hulls of typical curves.

Finally, we consider the last unstable case 3f . In the vicinity of O for those m
close to m0 the boundary H(rm) is given by the 3-tangent plane ã1ã2ã3, which
is close to the supporting osculating plane a1a2a3 for m = m0. Therefore, the set
Su(rm) is the intersection of the surface of a truncated swallowtail l1 = (Su(rm), a1)
with the smooth surfaces l2 = (γ(rm), a2) and l3 = (γ(rm), a3). These smooth
surfaces l2, l3 and Ô are pairwise transverse for m = m0. They remain transverse
for close values of m. In general position, the smooth map ρ taking the parameter m
to the intersection point of these three surfaces is nondegenerate. Therefore, the set
Σ consisting of those points m for which ρ(m) belongs to the truncated swallowtail l1
is diffeomorphic to the latter set. Thus, we obtain normal form (4) from the list of
normal forms of singularities of convex hulls of spatial curves.

This finishes the proof of Theorem 2.

3.3. Proof of Theorem 1. The proof of Theorem 1 is now an easy exercise,
which consists in applying the Legendre transform to planar curves and checking
the following facts.

The support of a supporting line of a curve from a generic two-parameter family
contains at most three points, provided that the origin belongs to the convex hull of
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this support. If the origin belongs to a one- or two-point support, then the convex
hull is stable in the vicinity of zero in a general position.

In the remaining unstable case of a three-point support the Legendre transform
of the multigerm of the curve consists of three pairwise transverse curves, which
depend on common parameters. The location of zero inside the convex hull is
determined by the competition between the two intersection points of these lines,
and defines a singularity of type y = |x| in the way similar to case 40.
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